

WE-NEED

Water Needs, Availability, Quality and Sustainability

Monica Riva (Coordinator)	Politecnico di Milano Polimo - Italy
Brian Berkowitz	Weizmann Institute of Science Weizmann - Israel
Susana Loureiro	Universidade de Aveiro UAVI - Portugal
Daniel Fernandez-Garcia	Universitat Politecnica de Catalunya UPO - Spain

Develop new management strategies to assist the GOAL: sustainable use/protection of Groundwater resources (springs – wells)

KEYWORDS: Management/Protection of Groundwater Resources – Sustainability - Risk Assessment - Relevant Studied Cases (real scenarios) - Multiscale

> **WATER QUANTITY**: Over-exploitation of Groundwater Resources **WATER QUALITY:** Regulated and Emerging Contaminants

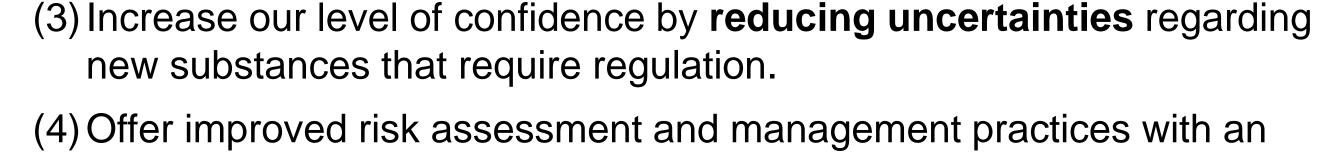
Cremona/Crema Aquifer: located within the northern part of the Padana Plain, in the so-called Springs Belt. Natural high-quality water springs are the main supply to agriculture and a key environmental driver. Springs location in the Crema-Cremona-Bergamo ADRIATICO TIRRENO 5 km Springs arpae Bologna aquifer Bologna Aquifer: a key source of water for the metropolitan area of

Scientific/Application-oriented objectives:

- Develop methods/models that analyse/incorporate uncertainty quantification and its propagation across observation scales (as grounded on direct observations/experiments at diverse scales of interest).
- Provide quantitative understanding and process-based models of the hydrogeological system and geochemical behavior of reactive chemical species in relevant scenarios.
- Include these results within a decision making framework for the sustainable use of water, preserving historical heritage, and producing acceptable risk to existing ecosystems.
- Assessment of the contaminant-specific vulnerability of the aquifer systems.
- Physically-based **risk assessment** and water management protocols.

Start day: 20 April 2016 – Duration:3 years

		Lead Partner	Participating Partner
WP1	Data collection and multiscale characterization	Polimi	UPC, UAVR, Weizmann
WP2	Probabilistic flow and transport modeling	UPC	Polimi, Weizmann
WP3	Fate of ECs - laboratory experiments and modeling	Weizmann	UAVR
WP4	Ecotoxicology	UAVR	Weizmann
WP5	Multidisciplinary risk assessment and decision making	Polimi	UPC, UAVR, Weizmann
WP6	Dissemination of results, communication with stakeholders/general public	Polimi	UPC, UAVR, Weizmann
WP7	Project management	Polimi	


WP4 WP7 Overall structure of the work plan Field data Multiscale model Emerging organization contaminants (ECs) and analysis Probabilistic flow Laboratory and transport Pilot site experiments modeling characterization Coordination -Flow and transport **Ecotoxicity** at pilot sites Groundwater risk assessment mode Risk assessment of the analyzed field cases ————— Stakeholder needs Decision under risk Feedback Dissemination

Innovation

Bologna.

- (1) Statistical Scaling. Models to describe aquifer functioning under the influence of uncertain parameters and processes defined at diverse spatial scales.
- (2) Characterization of the fate of EC in aquifers.
- (3) Quantification of the effect of multiple sources of uncertainty (hydrogeological settings, aquifer architecture, abstraction rates, sources and loads of contamination,..) on sustainable management and protection of the groundwater bodies.
- (4) Application of Stochastic groundwater models in real-relevant hydrogeological studies.
- (5) Probabilistic Risk assessment (incorporating health implications). Decision making under Risk.

and rational use of modeling options and capabilities).

(1) Quantification of the uncertainty linked to evaluation of environmental

impacts of groundwater extraction and contaminant dynamics

(2) Provision of an understandable and ready-to-use platform for risk

analysis and management under uncertainty (relying on data acquired

(through modeling, delimitation of data requirements, and innovative

overall effect of reducing future costs associated with overexploitation/contamination of groundwater.

Expected impacts

experimental analyses).

